Erratum to “Approximation of convex bodies by axially symmetric bodies”

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermophoresis of Axially Symmetric Bodies

Thermophoresis of axially symmetric bodies is investigated to first order in the Knudsen-mimber, Kn. The study is made in the limit where the typical length of the immersed body is small compared to the mean free path. It is shown that in this case, in contrast to what is the case for spherical bodies, the arising thermal force on the body is not in general antiparallel to the temperature gradi...

متن کامل

Fine Approximation of Convex Bodies by Polytopes

We prove that for every convex body K with the center of mass at the origin and every ε ∈ ( 0, 12 ) , there exists a convex polytope P with at most eO(d)ε− d−1 2 vertices such that (1− ε)K ⊂ P ⊂ K.

متن کامل

Minimum-Area Axially Symmetric Convex Bodies containing a Triangle and its Measure of Axial Symmetry

Denote by Km the mirror image of a planar convex body K in a straight line m. It is easy to show that K∗ m = conv(K ∪ Km) is the smallest (by inclusion) convex body whose axis of symmetry is m and which contains K. The ratio axs(K) of the area of K to the minimum area of K∗ m is a measure of axial symmetry of K. A question is how to find a line m in order to guarantee that K∗ m be of the smalle...

متن کامل

The Cross-section Body, Plane Sections of Convex Bodies and Approximation of Convex Bodies, Ii*

We compare the volumes of projections of convex bodies and the volumes of the projections of their sections, and, dually, those of sections of convex bodies and of sections of their circumscribed cylinders. For L ⊂ R a convex body, we take n random segments in L and consider their ‘Minkowski average’ D. For fixed n, the pth moments of V (D) (1 ≤ p < ∞) are minimized, for V (L) fixed, by the ell...

متن کامل

Random Polytopes, Convex Bodies, and Approximation

Assume K ⊂ R is a convex body and Xn ⊂ K is a random sample of n uniform, independent points from K. The convex hull of Xn is a convex polytope Kn called random polytope inscribed in K. We are going to investigate various properties of this polytope: for instance how well it approximates K, or how many vertices and facets it has. It turns out that Kn is very close to the so called floating body...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2003

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-03-07225-3